What Do Hindi Native Speakers Predict?

INVESTIGATING VERB CLASS, VERB MORPHOLOGY AND WORD ORDER

Apurva and Samar Husain
Indian Institute of Technology, Delhi
Introduction

- abhay ne roti
 Abhay ERG bread

- It has been established that human sentence processing involves prediction, i.e. we do not wait for the entire utterance to complete before making sense of the utterance

- Prediction can be thought as some kind of top-down process wherein the upcoming linguistic material becomes activated before it is actually encountered
Introduction

- While it is undisputed that we predict, the exact mechanism of the prediction system is still unclear.

- It is also unclear as how the prediction system interacts with other cognitive processes/resources (e.g. working memory).
Broad goal of this project

- What are the processes underlying moment-by-moment predictions of a Hindi native speaker?
- How do these interact with working memory constraints?
- What does it tell us about human sentence processing in general?
More specifically

- We investigate:
 - verb class,
 - word order,
 - verb morphology

- In order to investigate these, we vary:
 - the number of (animate) noun phrases,
 - the case markers on the noun phrases
Experiment

- We conducted a sentence completion study
 - Items were presented using Linger in self-paced reading paradigm
 - Participants read incomplete sentences and had to complete it meaningfully
- Items were randomized
- 30 Hindi native speakers from Jawaharlal Nehru University and IIT Delhi participated in the experiment
Design

- No. of noun phrases: 1, 2, 3
 - ladkaa, dost, mahilaa

- Case markers: 0, ne, ko, se

- There were:
 - 4 one noun phrase conditions
 - 16 two noun phrase conditions
 - 64 three noun phrase conditions

- There are 29 subjects, and 84 items
 - In all there were 2436 data points
 - Data from 1 subject was removed because he/she did not understand the task
 - 1 condition only had 6 data points due to a coding error
Design

- 1 NP examples
 - ladke ne
 - ladke ko
 - ...

- 2 NP examples
 - ladke ne dost ko
 - ladke ko dost se
 - ...

- 3 NP example
 - ladke ne dost ko mahilaa se
 - ...

- So, all items were of the form
 - ladka/ladke.ne/ko/se dost.0/ne/ko/se mahilaa.0/ne/ko/se
Coding

- After running the experiment, data transcription involved coding the following information based on participant response
 - **Grammaticality**: 1 (grammatical), 0 (ungrammatical)
 - **Word Order**: 1 (canonical), 0 (non-canonical)
 - **Verb class**: T (transitive), IN (intransitive), DT (ditransitive), EXP (experiencer), COP (copula), CAUS (Causative)
 - **Verb morphology**: Perf (perfective), Obl (obligational), …
 - …
 - …
 - … (some others that are not discussed here)
Caveats

- All sentences presented in isolation
 - It is known that discourse will have some role to play in predicting word order

- Broad verb classes
 - Some distinctions currently not made

- Only animate nouns used

- Current analysis of verb class/morphology only considers simple completions
 - e.g. completions with non-finite verbs are deemed complex and not considered

- Passives, argument ellipsis, imperatives, noun compounding not considered

- These issues will be addressed in the future analysis/investigations
Grammaticality

- If prediction is pervasive during processing, then we expect that the noun phrases and case-markers will be successfully employed to produce grammatical continuations.

- So, if a condition that can otherwise be completed grammatically gets high ungrammatical continuations, we need to understand why that is.
Grammaticality

- Very few ungrammatical cases in 1 NP conditions. Not surprising!
- Examples where ~50% instances are ungrammatical

<table>
<thead>
<tr>
<th>2 NP</th>
<th>3 NP</th>
</tr>
</thead>
<tbody>
<tr>
<td>ne, ne</td>
<td>ko, se, se</td>
</tr>
<tr>
<td>ko, ko</td>
<td>se, ne, se</td>
</tr>
<tr>
<td>se, se</td>
<td>se, ko, ko</td>
</tr>
<tr>
<td></td>
<td>se, ko, se</td>
</tr>
<tr>
<td></td>
<td>se, se, ko</td>
</tr>
</tbody>
</table>
Grammaticality

- Other 3 NP cases such as \((ne, ko, se)\), \((se, ko, ne)\), etc. are grammatically completed.
- Current pattern suggests that the main reason for ungrammaticality (in cases were grammatical continuations are possible) is some kind of cue-based interference. The interference happens because of the presence of duplicate case markings, e.g. \((se, ne, se)\), \((se, ko, ko)\), etc.

- If this is true, then it would mean that certain valid case-marker combinations are not always beneficial for predicting the upcoming verb.
Word Order

- Hindi is known to be a relatively free word order language
- Previous work on word order variation (e.g. Gambhir, 1981; Butt and King, 1996; Kidwai, 2000) are motivated by information structure and discourse considerations
- In this study, we only look at sentences in isolation
Word Order

- In this study, 3.5% of the data has continuations with non-canonical word order
- What are these conditions?

<table>
<thead>
<tr>
<th>ko, 0</th>
<th>se, ko</th>
</tr>
</thead>
<tbody>
<tr>
<td>ko, 0, 0</td>
<td>se, 0, ko</td>
</tr>
<tr>
<td>ko, se, 0</td>
<td>se, ko, 0</td>
</tr>
<tr>
<td>se, 0</td>
<td>se, 0, 0</td>
</tr>
</tbody>
</table>

- These conditions have NP1 with a ko or se case marker
- This means that ko/se is not preferred in the canonical subject position
 - Although they are grammatically permitted at this position
Word Order

- Interestingly, the order of case markers interact with word order prediction
 - *se* before *ko* in a 2 NP condition was not treated as a subject, rather *ko* was treated as the subject
Verb class

- We know that case markers and no. of NPs together determine the verb class
- Not surprisingly we found evidence for this in our data

<table>
<thead>
<tr>
<th>Dominant verb class</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 NP</td>
</tr>
<tr>
<td>Intransitive, Experiencer, Copula</td>
</tr>
<tr>
<td>2 NP</td>
</tr>
<tr>
<td>Transitive</td>
</tr>
<tr>
<td>3 NP</td>
</tr>
<tr>
<td>Causative</td>
</tr>
</tbody>
</table>
Verb class

- Similarly, case markers determine the verb class

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>ne</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 NP</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- *ne* case marker insures the prediction of a transitive verb in close to 90% instances
- *ko* resulted in prediction of experiencer verbs (or verbs with dative subjects)
 - *ladke ko pyaar hai, ladke ko bukhar hai*
- *se* does not seem to affect verb class prediction as it is rarely treated as a subject
Dynamic nature of verb class prediction

- **How does the verb class prediction change as we get additional NPs?**

| **NP1.0 NP2.C***: Intransitive → Transitive |
| **NP1.0 NP2.C* NP3.se/ko**: Intransitive → Transitive → Causative |

| **NP1.ko NP2.se**: Transitive → Experiencer |
| **NP1.ko NP2.se N3.ne**: Transitive → Experiencer → Causative |
| **NP1.ko NP2.se N3.0**: Transitive → Experiencer → Transitive |

| **NP1.se NP2.se/ko**: Intransitive → Causative/Experiencer |
| **NP1.se NP2.ko NP3.ne**: Intransitive → Causative/Experiencer → Causative |
Dynamic nature of verb class prediction

- We can see that Hindi native speakers are constantly revising their predictions based on the new material.
- We still need to investigate how this change interacts with word order.
- Studying these changes will help us determine the processing cost of these factors through an online experiment.
Morphology

- We coded perfective, habitual, continuous, obligational, abilitative verb comple
 - Perfective~78%
 - Habitual~8%
 - Continuous~3%
 - Obligational+Abilitative~8%

- Data shows default completion is perfective
Morphology

- Not surprisingly, *ne* triggers perfective morphology
- *se* marker resulted in the prediction of verbs with a specific (abilitative) verb complex
 - *ladke se padha nahi gya.*, *ladke se kaam nahi hua*
- conditions where we got habitual morphology (R data, subset HAB)
- conditions where we got continuous morphology (subset conditions for CONT)

- Data shows default completion is perfective
Wrapping up

- Our analysis reiterates many established facts wrt the effect of no. of NPs and case marker on verb class and morphology
- However, we noted that the role of these factors is constrained, i.e. case markers need not always help in prediction
- In the absence of any prior discourse, non-canonical word order is rare. se/ko is not treated as a subject when it occurs in a sentence initial position
- Verb class prediction can change with additional material. These changes should lead to differing processing cost for different conditions
Thanks!