Forgetting effects due to Local Coherence in Hindi

Question: What is the nature of prediction in head-final languages?

- This study:
 - Prediction is fallible: prediction of a head/structure in the main clause is forgotten in sentences with a center-embedded relative clause in the language Hindi.
 - Local coherence effect [1].
 - Current results are not explicable by expectation-based accounts [2, 3].

Prediction: what we know

- Speakers of head-final languages are assumed to be good at making predictions about the upcoming material based on the input received so far [4].
- Inclusion of pre-verbal elements facilitates processing at the predicted clause-final verb [5].
- The 'boy who saw the paper (fallen behind the table)' was very inquisitive.

Explanation: expectation based accounts [2, 3]

The FORGETTING hypothesis

The prediction of the main clause verb by the head noun is forgotten in the presence of a locally coherent parse.

EXPERIMENT: Local Parse type × post-RC Clause Type

- Ungrammatical sentences with center-embedded relative clauses (RC) where the post RC material cannot be integrated with the head noun across all conditions.

Local Parse type:
- Locally coherent, -Locally coherent
 - In the +Locally coherent conditions, post RC material can be integrated with RC internal object noun in a locally coherent parse.
 - This manipulation utilizes Canonical(=SVO) word order in RC for +Locally coherent and Non-canonical (=SOV) word order for -Locally coherent (based on [6]).
- post-RC Clause Type: Copula, Transitive.
 - Copula: agreement morphology does not match the head noun
 - Transitive: the transitive verb cannot be integrated thematically with the head noun & agreement morphology does not match the head noun

Main effect of Local Parse Type: Reading Times at the post RC verb for +Locally Coherent < -Locally Coherent if the prediction of the main clause verb is forgotten and the RC internal NP is integrated with the post-RC material in a locally coherent parse.

- A significant interaction: the effect of Local Parse type on RTs may differ across the two structures.
- An expectation-based account [2, 3] predicts no difference in RTs between the conditions at the post RC verb.

Since the critical verb-forms in the experimental items are ungrammatical, their probability of occurrence given prior words ought to be close to zero across all conditions.

Methods

- Centered self-paced reading + Acceptability rating
- 24 latin-squared items, 56 fillers
- Experiments were conducted in a quiet room.
- Three native speakers of Hindi from the University of Delhi.
- Participants were given a 24-item experimental test.
- Each item was presented on a computer screen.
- Participants were asked to indicate whether the sentence was grammatical or not.
- The experimental items were presented in a Latin square design.
- The items were divided into four sets of six items each.
- The order of presentation of the sets was randomized across participants.
- The acceptability ratings were used to evaluate the effect of Local coherence on RTs.
- The RTs were recorded using a reaction time clock.
- The RTs were measured from the onset of the sentence to the moment of the target word recognition.

RESULTS: RTs

- Linear-mixed effects models were used for all statistical analyses.
- RTs at the critical region:
 - a significant main effect of Clause Type (t=4.06): RTs for Transitive > Copula.
 - a significant interaction effect (t=2.56) driven by the Transitive condition: RTs for +Locally coherent < -Locally coherent.
- RTs at the post-critical region:
 - a significant effect of Local Parse type (t=4.32): RTs for +Locally coherent < -Locally coherent.

Figure 1. RTs for the Copula condition Figure 2. RTs for the Transitive condition

RESULTS: Ratings

<table>
<thead>
<tr>
<th>Table 1. Experimental items</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. +Locally coherent, Copula</td>
<td>4.4</td>
</tr>
<tr>
<td>b. -Locally coherent, Copula</td>
<td>3.8</td>
</tr>
<tr>
<td>c. +Locally coherent, Transitive</td>
<td>4.2</td>
</tr>
<tr>
<td>d. -Locally coherent, Transitive</td>
<td>3.8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 2. Filler sentences</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clearly grammatical fillers</td>
<td>5.2</td>
</tr>
<tr>
<td>Clearly ungrammatical fillers</td>
<td>2.4</td>
</tr>
<tr>
<td>All fillers</td>
<td>4.3</td>
</tr>
<tr>
<td>(1 to 7 scale, 7=highest)</td>
<td></td>
</tr>
</tbody>
</table>

CONCLUSION

- Local coherence occurs with a non-canonical word order (SVO) in the RC:
 - Role of head-finality – the finite verb in the RC could be a strong cue for a clause boundary and the RC-final NP can be treated as being beyond this boundary allowing integration of NP in the upcoming string.
 - Role of revision within the RC – more time in RC, more decay of NPs.
- Combining RTs for RC-Object & RC-verb:
 - a significant effect of Local Parse type in a Post hoc t-test (p<0.05).

Further issues

- The results demonstrate fallibility in prediction processes in a head-final language using a relatively simple structure.
- Therefore, it is important to further investigate broad claims about the absence of forgetting effects caused by memory constraints in head-final languages [7].

Acknowledgments

Thanks to Srabasti Dey for helping run this experiment.
Thanks to Lynn Frazier and the University of Massachusetts Psycholinguistics Workshop for valuable discussion and feedback.
This study was supported by an IIT Delhi Faculty Grant to Samar Husain.

References